
S
eite 5

1 P
ro

jektsp
iegel | new

sletter ed
acentrum

 04 2009

AIS – Autonomous Integrated Systems
From Volker Schöber, Oliver Bringmann, Andreas Herkersdorf, Walter Stechele, Norbert Wehn, Matthias May, Daniel Ziener, Abdelmajid
Bouajila, Daniel Baldin, Johannes Zeppenfeld, Björn Sander, Jürgen Teich, Maurice Sebastian, Rolf Ernst, Dieter Treytnar

Forschungspartner

Uni Erlangen-Nürnberg
TU Braunschweig
TU Kaiserslautern
TU München
Uni Paderborn
Uni Tübingen

Unterstützt durch

Industriepartner

Atmel Germany
Alcatel-Lucent
ChipVision Design Systems
GLOBALFOUNDRIES Dresden
Infineon Technologies
Melexis
NXP Semiconductors Germany
OneSpin Solutions
Robert Bosch
TexEDA Design
X-Fab Semiconductor Foundries

Förderkennzeichen des

Vorhabens

01M3083

Laufzeit

01.12.2006 – 30.11.2009

Motivation

With the growing complexity of nanoelectronic inte-

grated systems, the importance of non-functional

requirements – like robustness or lifetime – are grow-

ing. Moreover, the area of application is often unknown

or not addressed. As a result, nanoelectronic systems

might fail. In classical chip designs, systems are often

specified for the worst case. This will lead into over-

engineered solutions in most cases. With AIS, we

propose a new design methodology to create large

nanoelectronic systems including communication

buses, memories, computation modules, sensors, and

actors besides control and data paths.

To give an example: Instead of designing chip buses

– like the AMBA bus from ARM CPUs – for the worst

case, future system buses are able to react under harsh

environments. The encoding technique will be changed

and the robustness of the chip enhanced. As a result,

the new encoding technique will reduce the perform-

ance of the bus only when it is needed. Moreover,

additional power consumption due to stronger encod-

ing techniques can be reduced to a minimum. This

example shows the envisioned flexibility of chips with

autonomous behaviour.

The characteristics of electronic systems to react

autonomously and accommodate flexibly to faults and

modifications of the environment as well as the internal

state require a new kind of thinking in the design-proc-

ess. Not only function, area and power consumption

are considered to be at the forefront, but also detecting

and reacting from systems under defective operative

conditions. That means sensors, evaluators and actua-

tors in MPSoCs are going to detect sporadically appear-

ing faults as well as analyse them and initiate actions to

guarantee reliable, flawless operation. An autonomous

operating system which works on the principle of self-

organisation is necessary in addition to error correcting

mechanisms, methods of correction and autonomous

elements for an MPSoC-platform. The operating

system manages hardware resources and allows the

usage of the corresponding hardware-architecture by

offering a machine-oriented software level (elementary

operating system), which provides an API in terms

of many services. This software level is going to be

self-optimising and self-healing on the principles of

self-organisation. For such dynamic self-healing and

optimisation it is necessary to have platform data about

possible ways of communication, as well as data about

processors and their performance characteristics. In

this way dynamic optimisation and the self-healing of

software will be supported by the hardware platform.

Figure 1.02 shows the areas of research done by the

partners in the project.

Figure 1.02: Research areas of the AIS project partners.

Goals and organisation of the project

The goal of the project is that the designed chips will

have additional functionality to react during application

to find errors, faults and degradation of the reliability of

single components and will be able to react for keep-

ing the system running. To do this, autonomous ele-

ments will be introduced into the system design. These

autonomous elements will both monitor data-paths,

control-paths and the structure of communication on a

Gefördert durch das Bundes-
ministerium für Bildung und
Forschung

In this article, the AIS cluster research project presents an overview of the results of the 6 R&D part-

ners after three years of work. AIS proposes a new design methodology for MPSoCs for autonomous

integrated systems, introducing an autonomous layer. Using this methodology, chips will be designed

to react with autonomous characteristics during application. A main focus during the research was to

incorporate interfaces between the design tools and the methodologies. As a result, different design

methodologies to increase autonomous behaviour are presented. Autonomous elements and functions

will be included to monitor and control data-paths, control-paths and communication buses to react at

block or system level. The robustness will be optimised by inserting self-optimisation services includ-

ing an operating system that is able to replicate, monitor and migrate tasks and services. The article will

present the highlights of the partners’ work and an FPGA-based prototyping platform which shows the

interaction of the complementing EDA methodologies of the partners in one design.

AIS

S
eite 6

1 P
ro

jektsp
iegel | new

sletter ed
acentrum

 04 2009

functional level and also react to change operating con-

ditions as well as faults. When fault correction occurs

actions will be initiated and, if necessary, superior

levels informed about the changed operating status.

The robustness will be optimised due to the insertion

of self-optimisation. Services will be investigated that

are used in an operating system for internal self-opti-

misation and self-healing through replication, monitor-

ing and migration on the basis of reliable structures of

communication.

The goals of the project are in accordance with the

principles of self-organization, self-protection and self-

healing. The components have to detect their status by

themselves and report it to the operating system level.

The spreading of errors and the negative impact on the

reliability of the MPSoC will thus be detected and, if

possible, corrected autonomously during operation. For

this, one needs some precautions in the SoC design:

compatible expansions in design methodology, EDA

tools for analysis autonomy and reliability, and last but

not least, support from hardware-oriented software

like operating systems. Three behavioural levels are

used to model the system characteristics needed in the

future: functional, autonomous and operating system

level, as shown in Figure 1.03. The autonomous behav-

ioural level is going to build a close connection with the

relating operating system. For several components the

relevant parameters will be identified from the system

model, and one corresponding component model will

be evaluated and optimised. This modelling of single

components will be considered during the separate

design steps starting with specification and continu-

ing until implementation. One objective is to analyse,

explore and optimise the necessary system resources

at system design level with the help of component

models, to guarantee reliability due to the autonomous

behaviour of the SoC during operating.

Figure 1.03: Beside the software and the functional layer, an addi-
tional layer is introduced by AIS, the autonomous layer.

To reach these goals AIS organized its research with

two work packages (WP). A new kind of system design

methodology for autonomous integrated systems is

explored in the first work package, depicted on the left

side. The second work package introduces the design

of components to fulfil the previously named require-

ments on the component level, as you can see on the

right side of Figure 1.04. With this new component

design methodology and components of architecture

will be dimensioned with autonomous characteristics

and provided for system design. In a process of explo-

ration and integration these components will be com-

bined with an autonomous behaviour based operating

system environment at system level in the system

level WP. Beside the hardware design, the new design

process will include the operating system level of the

MPSoC.

Figure 1.04: The project is organised in 2 work packages, system
design (AP1) and component design (AP2).

In addition to the two WPs, the project partners will

develop and exchange prototypal implementations

for validation to demonstrate interoperability using a

FPG prototyping platform. In the following the article

presents the research partners’ results beyond the

WPs. At the end, the demonstration is highlighted and

an outlook is presented.

Technische Universität München (TUM)

Self-correcting CPU data paths

In deep-submicron technologies, transient and timing

errors are a growing problem. Transient errors consist

of Single Event Upsets (SEUs) hitting storage elements

and creating bit-flips in addition to Single Event Tran-

sients (SETs) where particles striking the circuit logic

create glitches which can be sampled by registers and

hence create data corruption. Multiple concurrent tran-

sient errors have already also been observed in SoCs.

The objective of TUM was to build a self-correcting

CPU data path towards single and multiple transient

and timing errors. The hardening techniques should be

transparent for the software layer and more efficient

than massive redundancy techniques (such as Triple

Modular Redundancy). The Nicolaidis shadow register

[Nicolaidis99] is an efficient transient and timing error

S
eite 7

1 P
ro

jektsp
iegel | new

sletter ed
acentrum

 04 2009

monitor which consists of adding an extra register with

a delayed clock to each register that should be pro-

tected. This detects single SET, SEU and timing errors.

In order to also detect multiple SEUs, we extended this

technique with an Error Correcting code (ECC) [Boua-

jila09]. The result is a technique using timing (shadow

register) and information (ECC) redundancy that is

able to detect single and multiple SEU, SET and timing

errors.

Starting from this study of fault models and error moni-

tors, we designed and built a fault-tolerant CPU data

path where a corrective micro-rollback is performed

every time an error is detected. As the monitor detec-

tion latency is only one cycle, we don’t need to have

expensive FIFOs storing multiple previous states in

order to achieve rollback as described in [Tamir90].

Our correction scheme is able to re-execute errant

operation by “going-back” only one cycle, therefore we

need only history registers to store the previous inter-

pipeline registers state (see Figure 1.05) [Stechele07]

[Bouajila06]. This is a major contribution in comparison

to the costly classic rollback, which stores requires a

rollback to the last checkpoint potentially made “thou-

sands of cycles” before, and has therefore has large

error correction performance overheads. In our scheme

error detection and correction require only two cycles,

independent of where the error occurred and whether

it is a single or a multiple error.

Figure 1.05: Inter-pipeline register providing multiple error detection
(shadow+ECC), correction is being performed through micro-rollback
using history registers content

We implemented our protection scheme in a Leon3

VHDL soft core. The VHDL code has three different

working modes:

» Only error detection: only single/multiple error moni-

tors are implemented, we only detect errors. This

mode can be useful in applications which tolerate a

maximum error rate.

» Single error detection and correction: the monitor

uses shadow register (no ECC will be implemented

in the Figure 1.05); error correction is achieved

through micro-rollback thanks to the last cycle state

stored in history registers.

Single and multiple error correction: the monitor con-

sists of shadow registers and ECC, (see Figure 1.05),

single and multiple errors are detected, error correction

is achieved through a rollback from the state stored in

the history registers. This self-correcting CPU proc-

essor was tested both in simulation and on an FPGA

prototype using fault injection while running Mibench

standard tests [Mibench]. The two-cycle penalty per

error was confirmed. For instance for a 5 % error

rate, the performance penalty is only 10 % on the CPI

(cycle per instruction) as shown in Figure 1.06 [AIS-

M2 2 2-TUM-LIS-Q09]. Our investigations have been

presented to our industrial partners and we are inves-

tigating technology transfer opportunities with several

business units of Infineon Munich.

Figure 1.06: Relative CPI variation through error Rate

University of Erlangen-Nuremberg (FAU)

Control Path Protection

Single event effects and disturbances in the control

path lead to errors which manifest themselves in a cor-

rupted control flow. This may cause the carrying out

of wrong instructions. Detecting control flow errors

and therefore avoiding the execution of wrong or faulty

instructions is a problem of growing importance with

respect to reliability and security. Control path protec-

tion can be achieved by checking the control flow of a

programme under execution, and if necessary, initialis-

ing correction measures, for example the re-execution

of the last instructions. A quite general definition of

control flow checking may be given as follows: Con-

trol flow checking denotes the task to test whether a

sequence of programme counter values is correct with

respect to a given programme specification.

In embedded SoCs, a CPU often executes only a few

specified programmes over its lifetime. So, it is ben-

eficial to analyse these subroutines for control flow

instructions statically. It is possible to extract informa-

tion about the programme flow from an executable

programme during compilation time and use this infor-

Figure 1.07: Concept of autonomously interacting control flow
checker that can monitor the programme counter and correct a
corrupt control flow.

S
eite 8

1 P
ro

jektsp
iegel | new

sletter ed
acentrum

 04 2009

mation to check the control flow of the processor with

a so-called control flow checker at run-time (see Figure

1.07). On the other hand, hardware overhead and easy

integration into processor design and application devel-

opment flows are of the utmost importance in many

cost-sensitive applications, particularly in embedded

systems.

Our solution is a control flow checking architecture

consisting of an additional checker unit and some

few modifications of the processor pipeline. Direct

jumps and branches are checked with the information

extracted from the compiled code. We developed

and analysed two different methods for efficiently

storing this information in an on-chip memory. The

correct start and the target address of a direct jump

or branch are compared with the current values from

the processor pipeline. Returns can be verified in this

approach by introducing an additional hardware stack.

Furthermore, if an error is detected, the re-execution

procedure will be initiated. In this case, the address

of the erroneous instruction is forwarded to the fetch

stage of the CPU pipeline. The result is a re-fetch of

the instruction which caused the error. The detection

of errors happens during the execution of the errone-

ous instructions, so we have the possibility to react

immediately and prevent those incorrect instructions

from being executed. With this technique we there-

fore have no performance impact on the CPU and the

compiled programme code remains unchanged, which

makes our approach completely transparent to the pro-

gramme developer. This approach was also presented

in [ZT08] and [ZT09].

The hardware overhead for the additional checker was

evaluated on the AIS demonstrator. It was verified

that lookup tables and flip flop overhead amounted to

less than 5 % of the CPU core requirements. So the

only overhead results from the additional memory

needed to monitor the control flow instructions. The

challenge of integrating our approach into the com-

mon AIS demonstrator was the interaction with the

data path protection developed by the project partner

TUM. Both protection methods are integrated into one

CPU where the error correction of one method affects

the error detection of the other method. Therefore,

both protection methods must be coordinated with

each other. Furthermore, for the interaction with the

organic operation system (developed by the project

partner UPB), our programme analyser had to be

adapted. Finally, an interface for the communication

of the number of detected and corrected errors from

the control path checker to the operating system was

introduced.

University of Kaiserslautern (TUK)

Resilient Communication in MPSoCs

Recent case studies have shown that exploiting appli-

cation-level resilience can drastically reduce the area

and energy overhead for implementation-level resil-

ience. E. g. in [MAY08] an LDPC decoder case study

was performed. This study demonstrated that the over-

head was smaller than 20 % for an error resilient LDPC

architecture by exploiting application resilience. Similar

investigations were performed in [BAU07, GEO06].

Application resilience requires adaptive implementation

resilience, i. e., the strength of the error-resilience has

to be adapted during run-time.

Thus TUK extended the AMBA [ARM99] advanced

high-performance bus (AHB), which is the central

communication scheme in many MPSoCs, by adding

an application specific error protection scheme. This

error protection scheme is run-time reconfigurable by

the applications running on the Leon3 processors. So,

the strength of the error-protection mode, and thus

the energy and performance overhead, is adapted to

the type of data sent over the bus during run-time.

Up to sixteen different general or application specific

error protection modes can be implemented. Various

techniques with simple error detection and correction

codes are provided, e. g., parity bits with ARQ, repeti-

tion codes with voting, and Hamming codes provide

soft error protection. Timing errors are detected by

synchronously flipping one data bit every second clock

cycle in the master and the slave error detection and

correction EDC unit [MAY08], [WOR04]. The active

protection mode on the read/write data bus depends

on the address of the transfer.

The AMBA bus extension has been integrated into the

common demonstrator of the AIS project. The master

EDC units log the number of errors that were detected

on the data bus. Based on this information, the self-

organizing operating system ORCOS from project part-

ner UPB can change the error protection scheme on

the data bus or migrate tasks to another module.

University of Tübingen (UTU)

System level design for autonomous SoCs

In order to be able to design MPSoCs which can cope

with the challenges that are posed by future CMOS

technology nodes, a major shift in the applied SoC

design methods was necessary. While performance

and energy consumption were already taken into

account as optimization goals at system level, the

inclusion of reliability was still an open problem. The

foundation for the proposed design process is made

by an executable transaction level system model writ-

ten in SystemC, that allows the exploration of design

decisions/parameter sets with respect to performance,

energy consumption, power dissipation, temperature

and reliability. The behaviour of the system can be influ-

enced by using these design decisions and parameter

sets. The model reflects the most important properties

of the three logical system layers addressed in AIS

(see Figure 1.02), such as the capability of the operat-

ing system to migrate tasks or the policies for power

reduction that are implemented inside the hardware

units as accurately as possible.

S
eite 9

1 P
ro

jektsp
iegel | new

sletter ed
acentrum

 04 2009

An approach for detecting errors during run-time

includes failure rate registers at certain locations of a

module together with modern error monitors, such as

Razor [Aus03] or error correcting codes (ECC). In the

registers, the numbers of errors which are detected by

the monitors during a certain time interval are stored.

Based on these numbers a reliability measure can be

calculated using the technique presented in [Ber06].

When the reliability measure reaches an unacceptable

value, actuators are triggered and/or the correspond-

ing information is sent to the next higher block in the

module hierarchy. If, for example, a large number of

errors are counted over multiple intervals, the evaluator

possibly concludes that the advanced aging of the com-

ponent is responsible for this. When this information

is propagated within the system, this may lead to the

migration of tasks carried out by the operating system.

The challenge of how the faults, detected by the moni-

tors on the chip, can be propagated and aggregated

during run-time, in order to make conclusions about

the entire system and its subsystems, respectively, is

also dealt with during the system design process. In

doing so, it is taken into account, that errors occurring

are possibly not visible at system level due to potential

error masking.

Reliability considerations are often temperature-driven,

which means that steady state or time-dependent tem-

peratures of the components under consideration are

the initial point for a further analysis. To obtain compo-

nent temperatures their power consumptions have to

be known. These in turn are derived from activity infor-

mation. Design alternatives are evaluated at ESL with

respect to several design objectives, lately also includ-

ing temperature. However temperatures are dominated

by local power effects – a fact, that has not been suf-

ficiently considered at ESL until now. There is a lack of

appropriate power models. Therefore, a methodology

for the power analysis of embedded processors at a

high level of abstraction was developed which can be

used for accurate application-specific temperature and

reliability considerations [San09]. Application character-

istics only available at system level are combined with

abstracted gate level power information.

University of Paderborn

Self- organizing operating systems for MPSoCs

While the reliability inside fault-tolerant MPSoCs can

be increased by inserting error detection and error

correction codes directly inside processor and bus

structures some situations still need the support of

higher-level mechanisms. Thus one goal inside AIS

was to develop a reflective operating system which, on

the one hand eases the access to hardware resources,

and on the other hand increases the overall reliability of

self-healing and self-optimizing components. One task

of the reflective real-time operating system ORCOS

is to manage the underlying hardware transparently,

which is done by providing an API close to the POSIX

standard to the application programmer. As a major

design goal the configurability of the system offers a

high performance while being very small in means of

binary and memory footprint. Reflective components

for monitoring the execution of services and tasks as

well as replication and migration technologies have

been integrated as well.

Through close interaction with the autonomous hard-

ware the operating system is capable of analysing and

handling faults during the execution of a service and can

prevent future execution failures by using the replication

or migration mechanisms provided without any interac-

tion of the application programmer. In order to guarantee

the operability of the system a transparent communica-

tion structure has been developed which ensures the

consistency of communication channels between tasks

and services even after a service has been migrated

from a faulty node to a node with less failures.

As communication between such kinds of distributed

systems is a major issue, communication protocols for

routing and migration have been analysed and simu-

lated for a large set of nodes. While it was possible

to reduce the number of transmission errors by using

biologically inspired algorithms for routing packets

between nodes it was observed that small changes

in the configuration of such a distributed system may

result in completely different behaviours, which make

the use of simulations essential for ensuring the cor-

rectness of these algorithms.

The combination of the hardware approaches together

with the reflective operating system on the demon-

stration platform showed the usability of the overall

approach.

Technische Universität Braunschweig

Hardware and software measures for correction of

defects

The introduction of special system functions to react

to internal errors in computational cores as well as in

the communication infrastructure has an impact on

a wide variety of non-functional aspects. In real-time

systems compliance with application-dependent timing

constraints is of essential importance for the correct

functionality of the whole system. In safety related

real-time systems deadline failures entail the same

consequences as incorrect functional behaviour. Since

safety related systems, e. g. in aerospace or automo-

tive applications, are a main target of the semicon-

ductor industry, errors that affect timing guarantees

are of premier interest in the AIS project. The goal in

AIS is to develop methods to accurately quantify the

effects in the context of typical safety standards, such

as IEC61508, and come up with solutions to improve

safety and availability.

The reliability of fault-tolerant MPSoC-based real-time

systems has been explored from two different points

of view. On the one hand the communication infra-

S
eite 10

1 P
ro

jektsp
iegel | new

sletter ed
acentrum

 04 2009

structure has been considered. Based on a given error

correction technique, a timing analysis methodology

has been developed to derive the reliability, i. e. the

probability of failure-free operation during a certain

period of time. Two different mechanisms are cov-

ered by the analysis and compared with each other:

error correcting codes and error detecting codes with

retransmission of erroneous messages until a mes-

sage has been transmitted correctly. Results show that

selecting the best strategy is no trivial decision. The

best strategy strongly depends on system and applica-

tion characteristics, pointing out the need for analytical

methods for taking optimal design decisions.

Furthermore the reliability of fault-tolerant computa-

tional cores has been investigated. For that purpose

a check -pointing scheme has been specified in such

a way that safety-critical tasks are duplicated and

the results of the original tasks compared with those

produced by the replica. Whenever an error occurs

time-consuming rollback is necessary. All these fault

tolerance mechanisms might have effects on the sys-

tem’s functionality due to impacting the logical as well

as temporal correctness of the system, so that the

application of special analysis algorithms is necessary

to verify the final reliability as required by the safety

standards.

Another topic that has been included in these research

activities is the design of systems where functions of

different safety levels are mapped to the same MPSoC

system. Such systems with mixed safety criticalities

will be dominant in future embedded systems, where

many functions will be merged on the same IC. To min-

imize system overhead it is necessary to verify safety

levels individually. This is difficult where resources are

shared, such as cores and buses. It has been shown

that it is feasible to integrate communication channels

with widely different safety requirements into a single

bus and formally verify the safety levels independently.

For that purpose the formal analysis methodology men-

tioned above has been adopted to the design principles

of safety standards like IEC 61508 (design w.r.t. SIL).

Figure 1.08: Mixed-criticality design according to IEC 61508

Within the context of real-time system analysis a dem-

onstrator platform has been applied to illustrate the

effects of errors on system timing. For that purpose

errors have been injected during the transmission

of large data chunks over the AMBA bus, leading to

retransmissions and missing potential deadlines.

Demonstration of AIS design approach using a FPGA platform

An MPSoC demonstrator is implemented to demon-

strate the efficiency of the various techniques in a real-

istic environment. This demonstrator is implemented

on a Gaisler GR-CPCI-XC4V development board. The

Xilinx Virtex-4 LX100 FPGA [XIL] on the board contains

multiple Leon3 processor cores [GAI], an SDRAM

controller, and several peripheral units connected via an

AMBA AHB. The MPSoC consists of autonomous hard-

ware units for error-resilient processing and intercon-

nects as shown in Figure 1.09. The different units can

monitor and analyse sporadic disturbances and trigger

adequate reactions autonomously. Different techniques

are integrated into the MPSoC for a holistic protection

of the system: a self-correcting data path (TUM) and

control flow checking (FAU) in the LEON3 processor

cores and a run-time configurable data protection of

the AMBA AHB (TUK). The self-organizing operating

system ORCOS (UPB) monitors the error rates on

the different processors and can migrate tasks form

erroneous to reliable processors. The integration of the

different methods of the project partners into the com-

mon demonstrator strengthened cooperation in the AIS

project considerably.

The application running on the demonstrator is a chan-

nel decoding system, i. e., a turbo decoding system.

Turbo decoders are a hot topic in wireless communica-

tion and an important component in baseband receivers

for wireless communication systems such as WiMAX,

CDMA2000, UMTS, and 3GPP LTE. Channel decoding

corrects errors induced during data transmission over

the wireless channel. Turbo decoding is based on an

iterative algorithm with high computational complexity

and high communication bandwidth. A very interesting

aspect of this application is the fact that the decoding

algorithm belongs to the class of probabilistic algo-

rithms. These algorithms have a certain error-resilience.

Thus, we can not only investigate implementation resil-

ience, but also the interrelationship between application

and implementation resilience with this demonstrator

and we can explore and verify the various error protec-

tion techniques under various failure scenarios.

The application mapping is shown in Figure 1.09. Data

generator, Turbo encoder, wireless channel, and error

monitor are implemented as dedicated hardware mod-

ule inside the FPGA. The core unit, the Turbo decoder,

is implemented in software running on multiple Leon3

CPUs. Data to and from the turbo decoder is transmit-

ted over the AMBA bus. Additionally, the main memory

(SDRAM) is connected to the AMBA over the memory

controller.

The operating system ORCOS is capable of monitoring

the health status of an MAP decoder service. It uses the

S
eite 11

1 P
ro

jektsp
iegel | new

sletter ed
acentrum

 04 2009

monitoring interfaces of the error detection and error

correction hardware. The Turbo decoding task is to send

requests to the individual MAP decoder tasks running

on the Leon cores using the transparent communication

framework of the operating system. During execution

the operating system may decide, based on the error

values provided by the hardware, to migrate a decod-

ing task from one processor to a more reliable proces-

sor. Although the former decoder will not be available

any more the transparent communication framework

ensures the connectivity of the Turbo decoder to the

MAP decoder unit. Three scenarios are emulated to

evaluate various error protection techniques:

» In normal operation, no errors are injected. This is

our reference.

» In the failure operation, errors are injected into the

AMBA bus communication, the control and data

paths of the Leon3 CPUs by using pseudo random

generators based on LFSRs.

» Autonomous error handling in processors, com-

munication and operating system is activated during

autonomous operation.

Our demonstrator can be considered as a rapid proto-

typing system for error-resilient MPSoCs. It allows fast

design space exploration by emulating various error

protection techniques with varying failure rates on the

microarchitectural level. The impact on the system

behaviour can be evaluated with respect to overhead in

area and latency. It is important to point out that explo-

ration on the microarchitectural level is mandatory for

analysing the impact of transient errors in all parts of

the hardware. A simulation at this level would result in

extremely long simulation times because the system

behaviour has to be modelled at microarchitectural

level and has to be monitored over a long time period.

In the TUM self-correcting CPU data path, error detec-

tion is based on the Nicolaidis shadow register tech-

nique [Nicolaidis]. Error correction uses a customized

micro-rollback [Tamir90]. As the error detection latency

is only 1 cycle, storing the last cycle state is enough to

retry the errant operation. Therefore we added history

registers. Through pipeline micro-rollback, the errant

operation will be retried. Any error will be detected and

corrected with a fixed penalty of 2 clock cycles. This

correction penalty is independent of the stage at which

the error occurred. This has been checked in ModelSim

and in the FPGA prototype.

The number of needed clock cycles for re-execution of

an erroneous control instruction using the control path

protection of FAU depends on the currently executed

instruction. On a simple program counter increment (no

control flow instruction) we are able to correct the error

in one additional clock cycle, whereas a correction of

an erroneous return instruction needs five clock cycles.

Furthermore, cache misses due to falsified branch or

jump targets have also an impact on the latency.

We presented the demonstrator at the exhibition of

the DATE’09 conference in Munich, at the edaWork-

shop’09 in Dresden (Figure 1.10), and at the “Lange

Nacht der Wissenschaften” in Nuremberg, Fürth,

and Erlangen. Furthermore, the demonstrator will be

presented in an accepted paper on the DATE’10 confer-

ence [MAY10].

Figure 1.10: Demonstration of the AIS results during the edaWork-
shop09.

Summary and Outlook

The results of the AIS project demonstrates the

advantages of designing complex nanoelectronic chips

with autonomous behaviour. A new abstraction layer –

called the autonomous layer – is proposed. This layer

contains information to handle the intrinsic state of the

SoC, like the number of soft errors occurred in the data

path. Using the autonomous layer in a design platform

makes a new design philosophy for the industry pos-

sible: Creating a design environment for SoCs with

autonomous behaviour. Instead of creating autono-

mous behaviour by specifying the functional require-

ments the design flow helps to reach the goals of the

target market. The AIS project shows the usability of

the interfaces to combine different measures that have

been explored by the partners individually.

To give an example: Hardware- related measures like

self-correcting CPU data paths are aggregating the

Figure 1.09: Mapping of the channel coding system on the demons-
tration platform

S
eite 12

1 P
ro

jektsp
iegel | new

sletter ed
acentrum

 04 2009

number of errors within one module. The operating

system ORCOS reads out the accumulated events

of mismatches. Based on a given threshold, ORCOS

migrates critical tasks to other hardware resources with

fewer errors. As a result in a given MPSoC environ-

ment, the system will migrate safety-critical applica-

tions to hardware resources with the highest reliability

measured during applications. It increases the depths

of autonomous behaviour by enabling the interaction

and combination of individual approaches, like:

» Control path protection,

» Self-correcting CPU data paths,

» Resilient communication buses,

» System level design for autonomous SoCs,

» Self-organising operating systems for MPSoCs, and

» Reliability of fault-tolerant MPSoC-based real-time

systems.

The use of such techniques is useful in many applica-

tions where cost and computational complexity have

to be taken into account. As in the DRAM or solid-state

drives (SSD) market, the industry is looking for design

approaches to use unreliable technologies for reliable

applications. The results of AIS are promising for these

new design methodologies for a new class of reliable

MPSoCs with unreliable hardware. To give few exam-

ples where autonomous behaviour can help:

» In future automotive application, there will be a large

variety of communication. Safety critical buses in

automotive applications will be the “nervous sys-

tem” to manage and control fully electric cars. Due

to costs and energy consumption, industry is looking

for mechanisms to reduce the number of parallel

buses within one car and to raise the reliability of

data transmission. Sending signals with different pri-

orities and individual guaranteed response times is

a prerequisite to mixing data communication within

one bus so as to reduce costs and energy.

» Security and Chip card applications will need to

improve the security level in future applications.

The system application needs a stronger link to the

intrinsic state of the hardware. The number of hard-

ware monitors will increase. Protection mechanism

of control and data path will improve the security of

such applications.

» CPUs with high performance data buses already

use sensors inside the chip. Multicore applications

are already state of the art. Today for the first time

applications are using CPU and GPU together to

increase the utilisation of the hardware. A new class

of operating systems – like the ORCOS demon-

strated – provides the opportunity to improve this

trend and to link hardware resources and heir intrin-

sic state together to improve the performance and

reduce the margins of worst case scenarios.

Based on the promising research results the AIS-

Project partners propose to extend existing industrial

design flows. To utilize the results in an industrial

environment the research partners are open to identify-

ing an evaluation scenario together with the industrial

partners.

Publication of the project and references

[AIS-M2 2 2-TUM-LIS-Q09] A. Bouajila, J. Zeppen-

feld, W. Stechele, A. Herkersdorf, „Evalua-

tion von AE in einen CPU-Datenpfad“, AIS

Milestone report , M2.2.2-TUM-LIS-Q09,

28.02.2009

[ARM99] ARM: AMBA specification, ref. 2.0, May

1999, http://www.arm.com/.

[Aus03] T. Austin et al.: „Razor: A Low-Power Pipeline

Based on Circuit-Level Timing Speculation”,

Symp. On Microarchitecture (MICRO-36),

December 2003.

[BAU07] J. Bau, Q. Jacobson, R. Hankins, B. Saha,

A. Tabatabai, and S. Mitra, „Error Resilient

System Architecture (ERSA) for Probabilis-

tic Applications,” in IEEE Intl. Workshop on

Silicon Errors in Logic – System Effects, apr

2007.

[Ber06] A. Bernauer, O. Bringmann, W. Rosenstiel ,

A. Bouajila, W. Stechele, A. Herkersdorf: „An

Architecture for Runtime Evaluation of SoC

Reliability”, In INFORMATIK 2006 – Informatik

für Menschen, volume P-93 of GI-Edition –

Lecture Notes in Informatics, pages 177-185,

Köllen Verlag.

[Bouajila06] A. Bouajila, J. Zeppenfeld, W. Stechele,

A. Herkersdorf, A. Bernauer, O. Bringmann,

W. Rosenstiel, „Organic Computing at the

System on Chip Level”, Proceedings of the

IFIP International Conference on Very Large

Scale Integration of System on Chip (VLSI-SoC

2006). Springer, October, 2006

[Bouajila09] A. Bouajila, J. Zeppenfeld, W. Stechele,

A. Herkersdorf, „Multi-bit Soft- and Timing

Error Detection for CPU Pipelines”, Workshop

2009 – Electronic Design Automation (EDA),

Dresden, Germany, 26.05.2009 – 28.05.2009

[GAI] Gaisler Research, http://www.gaisler.com/.

[GEO06] J. George, B. Marr, B. E. S. Akgul, and K. V.

Palem, „Probabilistic Arithmetic and Energy

Efficient Embedded Signal Processing,” in

International Conference on Compilers, Archi-

tectures, and Synthesis for Embedded Sys-

tems (CASES’06), Oct 2006, pp. 158-168.

[MAY08] M. May, M. Alles, and N. Wehn, „A Case

Study in Reliability-Aware Design: A Resilient

LDPC Code Decoder”, in Proc. IEEE Design,

Automation and Test in Europe (DATE ’08),

Munich, Germany, Mar. 2008, pp. 456–461.

[MAY10] M. May, N. Wehn, A. Bouajila, J. Zeppen-

feld, W. Stechele, A. Herkersdorf, D. Ziener, J.

Teich, „A Rapid Prototyping System for Error-

Resilient Multi-Processor Systems-on-Chip.“

Accepted for publication at DATE 2010, Dres-

den, Germany.

Kont@kt (AIS):
Dr. Volker Schöber

fon: (05 11) 7 62 – 1 96 88
schoeber@edacentrum.de

S
eite 13

1 P
ro

jektsp
iegel | new

sletter ed
acentrum

 04 2009

[Mibench] http://www.eecs.umich.edu/mibench/

[Nicolaidis] Nicolaidis, „A Time Redundancy Based

Soft-Error Tolerance to Rescue Nanometer

Technologies”, in 17th IEEE VLSI Test Sympo-

sium, 1999.

 [San09] B. Sander, J. Schnerr, O. Bringmann: „ESL

Power Analysis of Embedded Processors for

Temperature and Reliability Estimations”,

International Conference on Hardware/Soft-

ware Codesign and System Synthesis, Greno-

ble, France, 2009.

[Seb08] M. Sebastian, R. Ernst. „Modelling and

Designing Reliable On-Chip Communication

Devices in MPSoCs with Real-Time Require-

ments”. In 13th IEEE International Conference

on Emerging Technologies and Factory Auto-

mation. Hamburg, 2008.

[Seb09] M. Sebastian, R. Ernst. „Reliability and

Safety Guarantees in Modern MPSoCs with

Real-Time Requirements”. edaWorkshop

2009. Dresden, 2009.

[SebE09] M. Sebastian, R. Ernst. „Reliability Analysis

of Single Bus Communication with Real-Time

Requirements”. In 15th Pacific Rim International

Symposium on Dependable Computing, 2009.

[Stechele07] W. Stechele, O. Bringmann, R. Ernst,

A. Herkersdorf, K. Hojenski, P. Janacik, F.

Rammig, J. Teich, N. Wehn, J. Zeppenfeld, D.

Ziener, „Concepts for Autonomic Integrated

Systems”, eda-Workshop, Hannover, June

19-20, 2007

[Tamir90] Y. Tamir, Marc Tremblay: „High-Perform-

ance Fault-Tolerant VLSI Systems Using Micro

Rollback”. IEEE Trans. Computers 39(4): 548-

554 (1990)

[WOR04] F. Worm, P. Ienne, P. Thiran, and G. De

Micheli, „On-Chip Self-Calibrating Com-

munication Techniques Robust to Electrical

Parameter Variations,” IEEE Design & Test of

Computers, vol. 21, no. 6, pp. 524–535, Nov.

2004.

[XIL] Xilinx, http://www.xilinx.com/.

[ZT08] D. Ziener and J. Teich, „Concepts for Autono-

mous Control Flow Checking for Embedded

CPUs”, In Proceedings of the 5th International

Conference on Autonomic and Trusted Com-

puting (ATC-08), pp. 234-248, Oslo, Norway,

June 23-25, 2008.

[ZT09] D. Ziener and J. Teich. „Concepts for run-

time and error-resilient control flow checking

of embedded RISC CPUs”. Int. Journal of

Autonomous and Adaptive Communications

Systems, Vol. 2, No. 3, pages 256-275, 2009,

Inderscience Enterprises Ltd.

Man stelle sich ein in naher Zukunft durchaus realisti-

sches Szenario vor, in welchem ein mobiler Service-

roboter als elektronischer Assistent für alltägliche

Handgriffe im Haushalt zur Verfügung steht. Anstatt

jedoch zuverlässig einen frisch gebrühten Kaffee zu

servieren, kollidiert der Helfer auf seinem Weg aus

der Küche mehrfach und verschüttet so die Hälfte des

Getränks. Die andere Hälfte geht verloren, als die Tasse

knapp neben der Tischplatte abgestellt wird.

SANITAS – Sichere Systeme auf Basis einer durchgängigen
Verifikation entlang der gesamten Wertschöpfungskette
BMBF-Projekt zur Verbesserung der Verifikation entlang der Wertschöpfungskette für die exemplarische Anwendung an der Industrieauto-
matisierung gestartet.

Die Beherrschung hochautomatisierter Fertigung von äußerst komplexen Produkten, die oft höchste

Anforderungen an die Betriebssicherheit erfüllen müssen, macht den Standort Deutschland heute

einmalig und auch im Vergleich zu Niedriglohnländern als Entwicklungs- und Produktionsstandort

wettbewerbsfähig. Der Erfolg hängt dabei wesentlich davon ab, dass die Sicherheitseigenschaften der

Produkte, Systeme und der Fertigungsanlagen, auf denen sie hergestellt werden, durch eine lückenlose

Verifikation garantiert werden können. Das vom BMBF seit dem 1.10.2009 unter dem Förderkennzeichen

01 M 3088 geförderte Forschungsvorhaben SANITAS erforscht und entwickelt eine ebenenübergreifende

Systemverifikationsmethodik auf Basis virtueller Modelle. SANITAS bezieht dabei alle Ebenen der Pro-

duktentwicklungskette vom mikro-/nanoelektronischen Teilsystem bis zum Endprodukt in die Verifika-

tion mit ein. So wird erstmalig eine durchgängige Verifikation entlang der gesamten Entwicklungskette

bis hin zur Fertigung zur Verfügung gestellt.

Zusammensetzung des

Projektkonsortium

Projektpartner

Fraunhofer-Gesellschaft, IIS
Forschungszentrum Informatik
Infineon Technologies AG
Micronas AG
Robert Bosch GmbH
Siemens AG
Tieto Deutschland GmbH
Universität Bremen
Universität Paderborn

Unterauftragnehmer

Universität Tübingen
OFFIS e.V. – Institut
für Informatik
TU München

Förderkennzeichen des

Vorhabens

01M3088

Laufzeit

01.10.2009 – 30.09.2012

Gefördert durch das Bundes-
ministerium für Bildung und
Forschung

Was im skizzierten Zukunftsszenario für den privaten

Endanwender einfach nur ärgerlich ist und ihn eventuell

davon abhalten wird, weitere Roboter zu erwerben,

besitzt im Kontext der industriellen Fertigung bereits

heute eine deutlich dramatischere Dimension: In

heutigen automatisierten Fertigungsanlagen ist ein

Betrieb von Industrierobotern nur in Sicherheitskä-

figen oder abgeschirmten Räumen möglich, um so

eine Gefährdung der beteiligten Bedienkräfte aus-

