
Veröffentlicht	auf	Scale4Edge	(https://project.edacentrum.de/scale4edge)

Startseite	>	Druckeroptimiertes	PDF

Success	Story:	Multi-Compiler	Support
2023/11/06

	[1] 	[2] 	[3]

Introduction
The	Scale4Edge	project	aims	to	create	an	efficient	RISC-V	ecosystem	for	edge	application	optimization.	It	focuses	on	developing	a	versatile	platform
to	 provide	 cost-effective,	 application-specific	 edge	 devices	 and	 services	 for	 various	 market	 segments.	 This	 is	 achieved	 through	 fine-grained
adaptation	of	generic	components,	covering	CPU	instructions,	user/application	software,	and	operating	system/firmware	 levels.	The	ecosystem	is
highly	 scalable	and	customizable	 to	 individual	applications,	 supporting	various	hardware	architectures	and	non-functional	properties	 like	energy
efficiency,	fault	tolerance,	reliability,	safety,	and	security.

The	Scale4Edge	ecosystem	currently	contains	three	different	compilers,	addressing	different	use-cases	of	the	ecosystem:

CompCert	is	a	formally	verified	compiler	for	safety	relevant	application	of	high	assurance	levels
X-LLVM	is	an	extendible	compiler	for	custom	instructions	based	on	Clang/LLVM
A	custom	configurable	GCC	compiler

CompCert	–	a	Verified	Compiler
CompCert	 is	a	compiler	 for	 the	C	programming	 language	 (https://www.absint.com/compcert/	 [4]).	 It	accepts	most	of	 the	 ISO-C	99	 language,	with
some	minor	exceptions	and	a	few	useful	extensions.	Its	intended	use	is	the	compilation	of	life-critical	and	mission-critical	software	written	in	C	and
meeting	high	levels	of	assurance.

What	sets	CompCert	apart	 from	any	other	production	compiler	 is	 that	 it	 is	 formally	verified,	using	machine-assisted	mathematical	proofs,	 to	be
exempt	from	miscompilation	issues.	In	other	words,	the	executable	code	it	produces	is	proved	to	behave	exactly	as	specified	by	the	semantics	of
the	source	C	program.	This	level	of	confidence	in	the	correctness	of	the	compilation	process	contributes	to	meeting	the	highest	levels	of	software
assurance.	 Using	 the	 CompCert	 C	 compiler	 is	 a	 natural	 complement	 to	 applying	 formal	 verification	 techniques	 (static	 analysis,	 program	 proof,
model	 checking)	 at	 the	 source	 code	 level:	 the	 correctness	proof	 of	CompCert	 guarantees	 that	 all	 safety	properties	 verified	on	 the	 source	 code
automatically	hold	as	well	for	the	generated	executable.

In	2022,	 the	Association	 for	Computing	Machinery,	ACM,	presented	the	CompCert	development	 team	with	 the	prestigious	ACM	Software	System
Award	 (https://www.absint.com/releases/220511.htm	 [5])	 and	 the	 ACM	 SIGPLAN	 Programming	 Languages	 Software	 Award
(https://www.sigplan.org/Awards/Software/	[6]).

During	the	Scale4Edge	project,	CompCert	was	given	a	backend	for	RISC-V.	CompCert	for	RISC-V	generates	code	for	the	base	instruction	sets	RV32I
and	RV64I	with	 standard	extensions	M	 (Integer	Multiplication	and	Division),	 F	 (Single-Precision	Floating-Point),	 and	D	 (Double-Precision	Floating-
Point).	CompCert	for	RISC-V	has	been	combined	with	picolibc	(https://github.com/picolibc/picolibc	 [7]),	a	C	library	designed	for	embedded	32-	and
64-bit	 microcontrollers	 with	 small	 memory.	 After	 some	 changes	 proposed	 by	 the	 CompCert	 developers	 (mostly	 to	 avoid	 GCC/Clang	 specific
language	extensions),	the	picolibc	source	code	can	now	be	compiled	with	CompCert.

X-LLVM	–	an	extendible	Compiler	for	custom	instructions

Existing	 toolchains	with	RISC-V	support	 cannot	yet	be	 flexibly	extended	 to	quickly	 support	 ISA	extensions.	 In	addition,	RISC-V	extensions	 in	 the
Scale4Edge	 project	 are	 described	 using	 a	 separate	 language	 called	 CoreDSL.	 An	 automated	 translation	 of	 these	 CoreDSL	 definitions	 into
corresponding	toolchain	extensions,	as	far	as	possible,	is	therefore	not	only	desirable	for	reasons	of	flexibility,	but	also	almost	inevitable	for	reasons
of	 consistency.	 For	 this	 reason,	 the	described	hardware	 (processor	 core)	 and	a	 virtual	 platform	and	a	 compiler	with	 support	 of	 custom	defined

https://project.edacentrum.de/scale4edge
https://project.edacentrum.de/scale4edge
https://www.infineon.com/
https://www.absint.com/
https://www.dlr.de/
https://www.absint.com/compcert/
https://www.absint.com/releases/220511.htm
https://www.sigplan.org/Awards/Software/
https://github.com/picolibc/picolibc

instructions	 can	 be	 generated	 from	 CoreDSL.	 We	 have	 successfully	 automated	 the	 modification	 of	 Clang/LLVM	 to	 support	 custom	 instructions
throughout	 the	whole	 software	 toolchain	 (compiler,	 linker	 debugger),	 as	 depicted	 in	 the	 figure.	 Based	 on	 a	 CoreDSL	 description	 of	 the	 custom
instructions,	 the	 extendible	 compiler	 toolchain	 (called	X-LLVM)	 implements	 a	 compiler	 generator	 (called	CD2TG)	 to	 provide	 the	 defined	 custom
instructions	as	assembler	code	or	intrinsic	function	for	explicit	usage.	If	possible,	custom	instructions	are	also	implicitly	used	by	the	compiler	(e.g.,
MAC	(Multiply	Accumulate)	or	Zero	Overhead	Loop).	If	this	were	done	based	on	a	manual	translation,	there	would	be	a	potential	for	an	incorrect	or
at	least	inconsistent	translation	at	each	individual	step.	By	automating	this	process,	these	errors	can	be	avoided.	Another	benefit	of	automation	is
the	speed	with	which	the	different	artifacts	can	be	regenerated.	For	example,	if	a	new	CoreDSL	description	is	created	or	an	existing	description	is
revised,	 the	 corresponding	 tool	 chains	 can	 be	 triggered	 directly	 to	 generate	 the	 different	 artifacts	 and	 thus	 be	 able	 to	 test	 the	 newly	 defined
instructions	 directly	 and	 revise	 them	 further	 if	 necessary.	 The	 current	 open	 source	 release	 of	 X-LLVM	 is	 available	 at	 https://github.com/DLR-
SE/extensible-compiler	[8].

GCC	–	the	power	of	optimization

gcc	supports	plenty	of	optimization	opportunities,	most	can	be	controlled	by	over	120	command	line	flags.

The	 Infineon	RISC-V	RTL	 generator	 supports	 also	 plenty	 of	 configurations	 (superset	 of	 CoreDSL)	 to	 generate	 a	 huge	number	 of	 RISC-V	 variants
differing	 in	 function,	 performance	 in	 clock	 cycles	 and	performance	 in	 clock	period.	 From	 the	perspective	 of	 compiler	 performance	analysis,	 the
number	of	clock	cycles	is	relevant.	The	maximum	clock	period	is	provided	by	the	synthesis	–	or	better	R2G	–	flow.	Performance	evaluation	is	done
by	RTL	simulation	but	can	be	moved	to	FPGAs	and	Emulation	as	RISC-V	or	SoC	features	(Timers)	are	used	to	measure	time.	For	evaluation,	classical
benchmarks	but	also	generated	software	has	been	applied.	Of	course,	the	framework	is	also	used	to	run	regression	over	the	complete	generation
chain	and	validate	the	compiler	result	for	a	specific	code	and	application.

Results	worth	mentioning	are	a	substantial	impact	of	compiler	optimization,	more	performance	when	comparing	to	other	non-RISC-V	cores	but	also
a	non-neglectable	memory	footprint	overhead.

Cont@ct:	

CompCert	|	Reinhold	Heckmann	|	AbsInt	Angewandte	Informatik	GmbH	|	heckmann absint	[dot]	com

X-LLVM	|	Kim	Grüttner	|	German	Aerospace	Center	(DLR)	|	kim	[dot]	gruettner dlr	[dot]	de

GCC	|	Wolfgang	Ecker	|	Infineon	Technologies	AG	|	wolfgang	[dot]	ecker infineon	[dot]	com	(wolfgang.ecker@infineon.com)

Further	Scale4Edge	partners	and	sub-contractors

	 [9]	 	 [10] 	 [11] 	 [12]	 	 [13]	 	 [14] 	 [15] 	 [16]	

	 [17]	 	 [10]	 	 [18] 	 [19] 	 [20]	 	 [21] 	 [22]	 	 [23]

	[24] 	[25]	 	[26]	 	[27]

https://github.com/DLR-SE/extensible-compiler
https://www.arquimea.com/
https://www.bosch.de/
https://www.concept.de/
https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/fachbereich/
https://www.epos-d.com/
https://www.fzi.de/
https://www.ihp-microelectronics.com/
https://www.lauterbach.com/
https://www.minres.com/
https://www.bosch.de/
https://eda.sw.siemens.com/en-US/
https://www.sysgo.com/
https://www.uni-bremen.de/
https://www.tu-darmstadt.de/
https://tu-dresden.de/
https://uni-freiburg.de/
https://rptu.de/
https://www.ei.tum.de/eda/
https://www.hni.uni-paderborn.de/sct/
https://www.edacentrum.de/

Herunterladen:	
Success	Story:	Multi-Compiler	Support	[28]

Das	Projekt	Scale4Edge	wird	unter	den	Förderkennzeichen	16ME0122K-140,	16ME0465,	16ME0900,	16ME0901	im	Förderprogramm	ZuSE	durch	das
deutsche	Bundesministerium	für	Bildung	und	Forschung	(BMBF)	gefördert.

Quell-URL:	https://project.edacentrum.de/scale4edge/success-story-multi-compiler-support

Links:
[1]	https://www.infineon.com
[2]	https://www.AbsInt.com
[3]	https://www.dlr.de
[4]	https://www.absint.com/compcert/
[5]	https://www.absint.com/releases/220511.htm
[6]	https://www.sigplan.org/Awards/Software/
[7]	https://github.com/picolibc/picolibc
[8]	https://github.com/DLR-SE/extensible-compiler
[9]	https://www.arquimea.com/
[10]	https://www.bosch.de
[11]	https://www.concept.de
[12]	https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/fachbereich/
[13]	https://www.epos-d.com
[14]	https://www.fzi.de
[15]	https://www.ihp-microelectronics.com
[16]	https://www.lauterbach.com
[17]	https://www.minres.com
[18]	https://eda.sw.siemens.com/en-US/
[19]	https://www.sysgo.com
[20]	https://www.uni-bremen.de
[21]	https://www.tu-darmstadt.de
[22]	https://tu-dresden.de/
[23]	https://uni-freiburg.de
[24]	https://rptu.de/
[25]	https://www.ei.tum.de/eda/
[26]	https://www.hni.uni-paderborn.de/sct/
[27]	https://www.edacentrum.de
[28]	https://project.edacentrum.de/scale4edge/system/files/ct_project_news/scale4edge-success-story-compilers.pdf

https://project.edacentrum.de/scale4edge/system/files/ct_project_news/scale4edge-success-story-compilers.pdf
https://www.bmbf.de/
https://project.edacentrum.de/scale4edge/success-story-multi-compiler-support

