
Veröffentlicht	auf	Scale4Edge	(https://project.edacentrum.de/scale4edge)

Startseite	>	Druckeroptimiertes	PDF

Success	Story:	Multi-Compiler	Support
2023/11/06

	[1] 	[2] 	[3]

Introduction
The	Scale4Edge	project	aims	to	create	an	efficient	RISC-V	ecosystem	for	edge	application	optimization.	It	focuses	on	developing	a	versatile	platform	to	provide	cost-effective,	application-specific	edge	devices	and	services	for	various	market
segments.	 This	 is	 achieved	 through	 fine-grained	 adaptation	 of	 generic	 components,	 covering	 CPU	 instructions,	 user/application	 software,	 and	 operating	 system/firmware	 levels.	 The	 ecosystem	 is	 highly	 scalable	 and	 customizable	 to
individual	applications,	supporting	various	hardware	architectures	and	non-functional	properties	like	energy	efficiency,	fault	tolerance,	reliability,	safety,	and	security.

The	Scale4Edge	ecosystem	currently	contains	three	different	compilers,	addressing	different	use-cases	of	the	ecosystem:

CompCert	is	a	formally	verified	compiler	for	safety	relevant	application	of	high	assurance	levels
X-LLVM	is	an	extendible	compiler	for	custom	instructions	based	on	Clang/LLVM
A	custom	configurable	GCC	compiler

CompCert	–	a	Verified	Compiler
CompCert	is	a	compiler	for	the	C	programming	language	(https://www.absint.com/compcert/	[4]).	It	accepts	most	of	the	ISO-C	99	language,	with	some	minor	exceptions	and	a	few	useful	extensions.	Its	intended	use	is	the	compilation	of	life-
critical	and	mission-critical	software	written	in	C	and	meeting	high	levels	of	assurance.

What	sets	CompCert	apart	from	any	other	production	compiler	is	that	it	is	formally	verified,	using	machine-assisted	mathematical	proofs,	to	be	exempt	from	miscompilation	issues.	In	other	words,	the	executable	code	it	produces	is	proved
to	behave	exactly	as	specified	by	 the	semantics	of	 the	source	C	program.	This	 level	of	confidence	 in	 the	correctness	of	 the	compilation	process	contributes	 to	meeting	 the	highest	 levels	of	software	assurance.	Using	 the	CompCert	C
compiler	is	a	natural	complement	to	applying	formal	verification	techniques	(static	analysis,	program	proof,	model	checking)	at	the	source	code	level:	the	correctness	proof	of	CompCert	guarantees	that	all	safety	properties	verified	on	the
source	code	automatically	hold	as	well	for	the	generated	executable.

In	2022,	the	Association	for	Computing	Machinery,	ACM,	presented	the	CompCert	development	team	with	the	prestigious	ACM	Software	System	Award	(https://www.absint.com/releases/220511.htm	[5])	and	the	ACM	SIGPLAN	Programming
Languages	Software	Award	(https://www.sigplan.org/Awards/Software/	[6]).

During	the	Scale4Edge	project,	CompCert	was	given	a	backend	for	RISC-V.	CompCert	for	RISC-V	generates	code	for	the	base	instruction	sets	RV32I	and	RV64I	with	standard	extensions	M	(Integer	Multiplication	and	Division),	F	(Single-
Precision	Floating-Point),	and	D	(Double-Precision	Floating-Point).	CompCert	for	RISC-V	has	been	combined	with	picolibc	(https://github.com/picolibc/picolibc	[7]),	a	C	library	designed	for	embedded	32-	and	64-bit	microcontrollers	with	small
memory.	After	some	changes	proposed	by	the	CompCert	developers	(mostly	to	avoid	GCC/Clang	specific	language	extensions),	the	picolibc	source	code	can	now	be	compiled	with	CompCert.

X-LLVM	–	an	extendible	Compiler	for	custom	instructions

Existing	toolchains	with	RISC-V	support	cannot	yet	be	flexibly	extended	to	quickly	support	ISA	extensions.	In	addition,	RISC-V	extensions	in	the	Scale4Edge	project	are	described	using	a	separate	language	called	CoreDSL.	An	automated
translation	of	these	CoreDSL	definitions	into	corresponding	toolchain	extensions,	as	far	as	possible,	is	therefore	not	only	desirable	for	reasons	of	flexibility,	but	also	almost	inevitable	for	reasons	of	consistency.	For	this	reason,	the	described
hardware	(processor	core)	and	a	virtual	platform	and	a	compiler	with	support	of	custom	defined	instructions	can	be	generated	from	CoreDSL.	We	have	successfully	automated	the	modification	of	Clang/LLVM	to	support	custom	instructions
throughout	the	whole	software	toolchain	(compiler,	linker	debugger),	as	depicted	in	the	figure.	Based	on	a	CoreDSL	description	of	the	custom	instructions,	the	extendible	compiler	toolchain	(called	X-LLVM)	implements	a	compiler	generator
(called	CD2TG)	to	provide	the	defined	custom	instructions	as	assembler	code	or	intrinsic	function	for	explicit	usage.	If	possible,	custom	instructions	are	also	implicitly	used	by	the	compiler	(e.g.,	MAC	(Multiply	Accumulate)	or	Zero	Overhead
Loop).	If	this	were	done	based	on	a	manual	translation,	there	would	be	a	potential	for	an	incorrect	or	at	least	inconsistent	translation	at	each	individual	step.	By	automating	this	process,	these	errors	can	be	avoided.	Another	benefit	of
automation	is	the	speed	with	which	the	different	artifacts	can	be	regenerated.	For	example,	if	a	new	CoreDSL	description	is	created	or	an	existing	description	is	revised,	the	corresponding	tool	chains	can	be	triggered	directly	to	generate
the	different	artifacts	and	thus	be	able	to	test	the	newly	defined	instructions	directly	and	revise	them	further	if	necessary.	The	current	open	source	release	of	X-LLVM	is	available	at	https://github.com/DLR-SE/extensible-compiler	[8].

GCC	–	the	power	of	optimization

gcc	supports	plenty	of	optimization	opportunities,	most	can	be	controlled	by	over	120	command	line	flags.

The	Infineon	RISC-V	RTL	generator	supports	also	plenty	of	configurations	(superset	of	CoreDSL)	to	generate	a	huge	number	of	RISC-V	variants	differing	in	function,	performance	in	clock	cycles	and	performance	in	clock	period.	From	the
perspective	of	compiler	performance	analysis,	the	number	of	clock	cycles	is	relevant.	The	maximum	clock	period	is	provided	by	the	synthesis	–	or	better	R2G	–	flow.	Performance	evaluation	is	done	by	RTL	simulation	but	can	be	moved	to
FPGAs	and	Emulation	as	RISC-V	or	SoC	features	(Timers)	are	used	to	measure	time.	For	evaluation,	classical	benchmarks	but	also	generated	software	has	been	applied.	Of	course,	the	framework	is	also	used	to	run	regression	over	the
complete	generation	chain	and	validate	the	compiler	result	for	a	specific	code	and	application.

Results	worth	mentioning	are	a	substantial	impact	of	compiler	optimization,	more	performance	when	comparing	to	other	non-RISC-V	cores	but	also	a	non-neglectable	memory	footprint	overhead.

Cont@ct:	

CompCert	|	Reinhold	Heckmann	|	AbsInt	Angewandte	Informatik	GmbH	|	heckmann absint	[dot]	com

X-LLVM	|	Kim	Grüttner	|	German	Aerospace	Center	(DLR)	|	kim	[dot]	gruettner dlr	[dot]	de

GCC	|	Wolfgang	Ecker	|	Infineon	Technologies	AG	|	wolfgang	[dot]	ecker infineon	[dot]	com	(wolfgang.ecker@infineon.com)

https://project.edacentrum.de/scale4edge
https://project.edacentrum.de/scale4edge
https://www.infineon.com/
https://www.absint.com/
https://www.dlr.de/
https://www.absint.com/compcert/
https://www.absint.com/releases/220511.htm
https://www.sigplan.org/Awards/Software/
https://github.com/picolibc/picolibc
https://github.com/DLR-SE/extensible-compiler

Further	Scale4Edge	partners	and	sub-contractors

	 [9]	 	 [10] 	 [11] 	 [12]	 	 [13]	 	 [14]

	 [15] 	 [16]	 	 [17]	 	 [10]	

	 [18] 	 [19] 	 [20]	 	 [21]

[22]	 	 [23] 	 [24] 	 [25]	 	 [26]	
[27]

https://www.arquimea.com/
https://www.bosch.de/
https://www.concept.de/
https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/fachbereich/
https://www.epos-d.com/
https://www.fzi.de/
https://www.ihp-microelectronics.com/
https://www.lauterbach.com/
https://www.minres.com/
https://www.bosch.de/
https://eda.sw.siemens.com/en-US/
https://www.sysgo.com/
https://www.uni-bremen.de/
https://www.tu-darmstadt.de/
https://tu-dresden.de/
https://uni-freiburg.de/
https://rptu.de/
https://www.ei.tum.de/eda/
https://www.hni.uni-paderborn.de/sct/
https://www.edacentrum.de/

Herunterladen:	
Success	Story:	Multi-Compiler	Support	[28]

Das	 Projekt	 Scale4Edge	 wird	 unter	 den	 Förderkennzeichen	 16ME0122K-140,	 16ME0465,	 16ME0900,	 16ME0901	 im	 Förderprogramm	 ZuSE	 durch	 das	 deutsche	 Bundesministerium	 für	 Forschung,	 Technologie	 und	 Raumfahrt	 (BMFTR)
gefördert.

Quell-URL:	https://project.edacentrum.de/scale4edge/success-story-multi-compiler-support

Links:
[1]	https://www.infineon.com
[2]	https://www.AbsInt.com
[3]	https://www.dlr.de
[4]	https://www.absint.com/compcert/
[5]	https://www.absint.com/releases/220511.htm
[6]	https://www.sigplan.org/Awards/Software/
[7]	https://github.com/picolibc/picolibc
[8]	https://github.com/DLR-SE/extensible-compiler
[9]	https://www.arquimea.com/
[10]	https://www.bosch.de
[11]	https://www.concept.de
[12]	https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/fachbereich/
[13]	https://www.epos-d.com
[14]	https://www.fzi.de
[15]	https://www.ihp-microelectronics.com
[16]	https://www.lauterbach.com
[17]	https://www.minres.com
[18]	https://eda.sw.siemens.com/en-US/
[19]	https://www.sysgo.com
[20]	https://www.uni-bremen.de
[21]	https://www.tu-darmstadt.de
[22]	https://tu-dresden.de/
[23]	https://uni-freiburg.de
[24]	https://rptu.de/
[25]	https://www.ei.tum.de/eda/
[26]	https://www.hni.uni-paderborn.de/sct/
[27]	https://www.edacentrum.de
[28]	https://project.edacentrum.de/scale4edge/system/files/ct_project_news/scale4edge-success-story-compilers.pdf

https://project.edacentrum.de/scale4edge/system/files/ct_project_news/scale4edge-success-story-compilers.pdf
https://www.bmbf.de/
https://project.edacentrum.de/scale4edge/success-story-multi-compiler-support

